Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Poplar stem transcriptome is massively remodelled in response to single or repeated mechanical stimuli.

Identifieur interne : 001250 ( Main/Exploration ); précédent : 001249; suivant : 001251

Poplar stem transcriptome is massively remodelled in response to single or repeated mechanical stimuli.

Auteurs : Lise Pomiès [France] ; Mélanie Decourteix [France] ; Jérôme Franchel [France] ; Bruno Moulia [France] ; Nathalie Leblanc-Fournier [France]

Source :

RBID : pubmed:28412928

Descripteurs français

English descriptors

Abstract

BACKGROUND

Trees experience mechanical stimuli -like wind- that trigger thigmomorphogenetic syndrome, leading to modifications of plant growth and wood quality. This syndrome affects tree productivity but is also believed to improve tree acclimation to chronic wind. Wind is particularly challenging for trees, because of their stature and perenniality. Climate change forecasts are predicting that the occurrence of high wind will worsen, making it increasingly vital to understand the mechanisms regulating thigmomorphogenesis, especially in perennial plants. By extension, this also implies factoring in the recurring nature of wind episodes. However, data on the molecular processes underpinning mechanoperception and transduction of mechanical signals, and their dynamics, are still dramatically lacking in trees.

RESULTS

Here we performed a genome-wide and time-series analysis of poplar transcriptional responsiveness to transitory and recurring controlled stem bending, mimicking wind. The study revealed that 6% of the poplar genome is differentially expressed after a single transient bending. The combination of clustering, Gene Ontology categorization and time-series expression approaches revealed the diversity of gene expression patterns and biological processes affected by stem bending. Short-term transcriptomic responses entailed a rapid stimulation of plant defence and abiotic stress signalling pathways, including ethylene and jasmonic acid signalling but also photosynthesis process regulation. Late transcriptomic responses affected genes involved in cell wall organization and/or wood development. An analysis of the molecular impact of recurring bending found that the vast majority (96%) of the genes differentially expressed after a first bending presented reduced or even net-zero amplitude regulation after the second exposure to bending.

CONCLUSION

This study constitutes the first dynamic characterization of the molecular processes affected by single or repeated stem bending in poplar. Moreover, the global attenuation of the transcriptional responses, observed from as early as after a second bending, indicates the existence of a mechanism governing a fine tuning of plant responsiveness. This points toward several mechanistic pathways that can now be targeted to elucidate the complex dynamics of wind acclimation.


DOI: 10.1186/s12864-017-3670-1
PubMed: 28412928
PubMed Central: PMC5392906


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Poplar stem transcriptome is massively remodelled in response to single or repeated mechanical stimuli.</title>
<author>
<name sortKey="Pomies, Lise" sort="Pomies, Lise" uniqKey="Pomies L" first="Lise" last="Pomiès">Lise Pomiès</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Auvergne (région administrative)</region>
<settlement type="city">Clermont-Ferrand</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Decourteix, Melanie" sort="Decourteix, Melanie" uniqKey="Decourteix M" first="Mélanie" last="Decourteix">Mélanie Decourteix</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Auvergne (région administrative)</region>
<settlement type="city">Clermont-Ferrand</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Franchel, Jerome" sort="Franchel, Jerome" uniqKey="Franchel J" first="Jérôme" last="Franchel">Jérôme Franchel</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Auvergne (région administrative)</region>
<settlement type="city">Clermont-Ferrand</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Moulia, Bruno" sort="Moulia, Bruno" uniqKey="Moulia B" first="Bruno" last="Moulia">Bruno Moulia</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Auvergne (région administrative)</region>
<settlement type="city">Clermont-Ferrand</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Leblanc Fournier, Nathalie" sort="Leblanc Fournier, Nathalie" uniqKey="Leblanc Fournier N" first="Nathalie" last="Leblanc-Fournier">Nathalie Leblanc-Fournier</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand, France. nathalie.leblanc@uca.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Auvergne (région administrative)</region>
<settlement type="city">Clermont-Ferrand</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28412928</idno>
<idno type="pmid">28412928</idno>
<idno type="doi">10.1186/s12864-017-3670-1</idno>
<idno type="pmc">PMC5392906</idno>
<idno type="wicri:Area/Main/Corpus">001360</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001360</idno>
<idno type="wicri:Area/Main/Curation">001360</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001360</idno>
<idno type="wicri:Area/Main/Exploration">001360</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Poplar stem transcriptome is massively remodelled in response to single or repeated mechanical stimuli.</title>
<author>
<name sortKey="Pomies, Lise" sort="Pomies, Lise" uniqKey="Pomies L" first="Lise" last="Pomiès">Lise Pomiès</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Auvergne (région administrative)</region>
<settlement type="city">Clermont-Ferrand</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Decourteix, Melanie" sort="Decourteix, Melanie" uniqKey="Decourteix M" first="Mélanie" last="Decourteix">Mélanie Decourteix</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Auvergne (région administrative)</region>
<settlement type="city">Clermont-Ferrand</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Franchel, Jerome" sort="Franchel, Jerome" uniqKey="Franchel J" first="Jérôme" last="Franchel">Jérôme Franchel</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Auvergne (région administrative)</region>
<settlement type="city">Clermont-Ferrand</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Moulia, Bruno" sort="Moulia, Bruno" uniqKey="Moulia B" first="Bruno" last="Moulia">Bruno Moulia</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Auvergne (région administrative)</region>
<settlement type="city">Clermont-Ferrand</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Leblanc Fournier, Nathalie" sort="Leblanc Fournier, Nathalie" uniqKey="Leblanc Fournier N" first="Nathalie" last="Leblanc-Fournier">Nathalie Leblanc-Fournier</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand, France. nathalie.leblanc@uca.fr.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Auvergne-Rhône-Alpes</region>
<region type="old region" nuts="2">Auvergne (région administrative)</region>
<settlement type="city">Clermont-Ferrand</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cluster Analysis (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Mechanotransduction, Cellular (MeSH)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Plant Development (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Stems (genetics)</term>
<term>Plant Stems (growth & development)</term>
<term>Plant Stems (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Stress, Mechanical (MeSH)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de regroupements (MeSH)</term>
<term>Contrainte mécanique (MeSH)</term>
<term>Développement des plantes (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Mécanotransduction cellulaire (MeSH)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Réaction de polymérisation en chaine en temps réel (MeSH)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
<term>Tiges de plante (croissance et développement)</term>
<term>Tiges de plante (génétique)</term>
<term>Tiges de plante (métabolisme)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Stems</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Stems</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
<term>Protéines végétales</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Stems</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Populus</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cluster Analysis</term>
<term>Genome, Plant</term>
<term>Mechanotransduction, Cellular</term>
<term>Oligonucleotide Array Sequence Analysis</term>
<term>Plant Development</term>
<term>Real-Time Polymerase Chain Reaction</term>
<term>Stress, Mechanical</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de regroupements</term>
<term>Contrainte mécanique</term>
<term>Développement des plantes</term>
<term>Génome végétal</term>
<term>Mécanotransduction cellulaire</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Séquençage par oligonucléotides en batterie</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Trees experience mechanical stimuli -like wind- that trigger thigmomorphogenetic syndrome, leading to modifications of plant growth and wood quality. This syndrome affects tree productivity but is also believed to improve tree acclimation to chronic wind. Wind is particularly challenging for trees, because of their stature and perenniality. Climate change forecasts are predicting that the occurrence of high wind will worsen, making it increasingly vital to understand the mechanisms regulating thigmomorphogenesis, especially in perennial plants. By extension, this also implies factoring in the recurring nature of wind episodes. However, data on the molecular processes underpinning mechanoperception and transduction of mechanical signals, and their dynamics, are still dramatically lacking in trees.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Here we performed a genome-wide and time-series analysis of poplar transcriptional responsiveness to transitory and recurring controlled stem bending, mimicking wind. The study revealed that 6% of the poplar genome is differentially expressed after a single transient bending. The combination of clustering, Gene Ontology categorization and time-series expression approaches revealed the diversity of gene expression patterns and biological processes affected by stem bending. Short-term transcriptomic responses entailed a rapid stimulation of plant defence and abiotic stress signalling pathways, including ethylene and jasmonic acid signalling but also photosynthesis process regulation. Late transcriptomic responses affected genes involved in cell wall organization and/or wood development. An analysis of the molecular impact of recurring bending found that the vast majority (96%) of the genes differentially expressed after a first bending presented reduced or even net-zero amplitude regulation after the second exposure to bending.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>This study constitutes the first dynamic characterization of the molecular processes affected by single or repeated stem bending in poplar. Moreover, the global attenuation of the transcriptional responses, observed from as early as after a second bending, indicates the existence of a mechanism governing a fine tuning of plant responsiveness. This points toward several mechanistic pathways that can now be targeted to elucidate the complex dynamics of wind acclimation.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28412928</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>04</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>04</Month>
<Day>17</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Poplar stem transcriptome is massively remodelled in response to single or repeated mechanical stimuli.</ArticleTitle>
<Pagination>
<MedlinePgn>300</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12864-017-3670-1</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">Trees experience mechanical stimuli -like wind- that trigger thigmomorphogenetic syndrome, leading to modifications of plant growth and wood quality. This syndrome affects tree productivity but is also believed to improve tree acclimation to chronic wind. Wind is particularly challenging for trees, because of their stature and perenniality. Climate change forecasts are predicting that the occurrence of high wind will worsen, making it increasingly vital to understand the mechanisms regulating thigmomorphogenesis, especially in perennial plants. By extension, this also implies factoring in the recurring nature of wind episodes. However, data on the molecular processes underpinning mechanoperception and transduction of mechanical signals, and their dynamics, are still dramatically lacking in trees.</AbstractText>
<AbstractText Label="RESULTS">Here we performed a genome-wide and time-series analysis of poplar transcriptional responsiveness to transitory and recurring controlled stem bending, mimicking wind. The study revealed that 6% of the poplar genome is differentially expressed after a single transient bending. The combination of clustering, Gene Ontology categorization and time-series expression approaches revealed the diversity of gene expression patterns and biological processes affected by stem bending. Short-term transcriptomic responses entailed a rapid stimulation of plant defence and abiotic stress signalling pathways, including ethylene and jasmonic acid signalling but also photosynthesis process regulation. Late transcriptomic responses affected genes involved in cell wall organization and/or wood development. An analysis of the molecular impact of recurring bending found that the vast majority (96%) of the genes differentially expressed after a first bending presented reduced or even net-zero amplitude regulation after the second exposure to bending.</AbstractText>
<AbstractText Label="CONCLUSION">This study constitutes the first dynamic characterization of the molecular processes affected by single or repeated stem bending in poplar. Moreover, the global attenuation of the transcriptional responses, observed from as early as after a second bending, indicates the existence of a mechanism governing a fine tuning of plant responsiveness. This points toward several mechanistic pathways that can now be targeted to elucidate the complex dynamics of wind acclimation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pomiès</LastName>
<ForeName>Lise</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Decourteix</LastName>
<ForeName>Mélanie</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Franchel</LastName>
<ForeName>Jérôme</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moulia</LastName>
<ForeName>Bruno</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Leblanc-Fournier</LastName>
<ForeName>Nathalie</ForeName>
<Initials>N</Initials>
<Identifier Source="ORCID">0000-0002-6079-1583</Identifier>
<AffiliationInfo>
<Affiliation>Université Clermont Auvergne, INRA, PIAF, F-63000, Clermont-Ferrand, France. nathalie.leblanc@uca.fr.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>04</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040542" MajorTopicYN="N">Mechanotransduction, Cellular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063245" MajorTopicYN="N">Plant Development</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013314" MajorTopicYN="Y">Stress, Mechanical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="Y">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Abiotic stress</Keyword>
<Keyword MajorTopicYN="Y">Acclimation</Keyword>
<Keyword MajorTopicYN="Y">Accommodation</Keyword>
<Keyword MajorTopicYN="Y">Mechanical stimuli</Keyword>
<Keyword MajorTopicYN="Y">Mechanotransduction</Keyword>
<Keyword MajorTopicYN="Y">Thigmomorphogenesis</Keyword>
<Keyword MajorTopicYN="Y">Time series</Keyword>
<Keyword MajorTopicYN="Y">microarray</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>07</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>03</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>4</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>4</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>4</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28412928</ArticleId>
<ArticleId IdType="doi">10.1186/s12864-017-3670-1</ArticleId>
<ArticleId IdType="pii">10.1186/s12864-017-3670-1</ArticleId>
<ArticleId IdType="pmc">PMC5392906</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2005 Feb;165(2):429-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11513-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12167669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Nov;16(4):433-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9881163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Jul;232(2):337-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20458494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 Jul 24;290(30):18770-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26037923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Sep;136(1):2790-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2008 Dec;95(12):1523-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21628160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Aug 14;5:401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25177327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Nov;51(352):1813-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11113160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):765-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8570631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Dec;148(4):2050-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18829981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Sep;151(1):223-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19571311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2015 Nov;20(11):729-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26459664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 May;156(1):286-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21398259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2004 Dec;7(6):651-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15491913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(1):43-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19088336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2014 Aug 18;24(16):1887-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25127214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2008 Jun;101(9):1421-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18448448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2000 Apr;20(8):535-540</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2014 Oct;114(6):1339-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24723447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Jan;39(2):209-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10080689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2014 Jan;42(Database issue):D1182-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24174544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1990 Feb 9;60(3):357-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2302732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013 Dec 30;13:229</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24377444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 May;210(3):850-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26790391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2006 Oct;93(10):1466-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21642094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Oct;228(5):757-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18719940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 May 1;29(9):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11328886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Sep;24(9):3530-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23023172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1998 Jan;18(1):65-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Aug;114(4):1561-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9276964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 May 1;62(4):689-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20202165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Gen Genet. 1999 Sep;262(2):212-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10517316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Oct;25(10):1243-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16076773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Apr;14(4):889-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11971143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Mol Biol Plants. 2013 Jul;19(3):307-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24431500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1996 Mar;30(6):1129-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8704124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D991-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23193258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jul;203(1):168-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24684233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 May 05;6:288</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25999964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 May;61(9):2403-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20363866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Jan;61(2):249-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19843314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Oct;166(2):988-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25157030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2014 Aug;7(8):1267-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24777989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 May;25(1):25-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10802651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Apr 08;6:236</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25904930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Nov;64(15):4663-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23913953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2016 May;35(5):995-1007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26883222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biostatistics. 2003 Apr;4(2):249-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12925520</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Auvergne (région administrative)</li>
<li>Auvergne-Rhône-Alpes</li>
</region>
<settlement>
<li>Clermont-Ferrand</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Auvergne-Rhône-Alpes">
<name sortKey="Pomies, Lise" sort="Pomies, Lise" uniqKey="Pomies L" first="Lise" last="Pomiès">Lise Pomiès</name>
</region>
<name sortKey="Decourteix, Melanie" sort="Decourteix, Melanie" uniqKey="Decourteix M" first="Mélanie" last="Decourteix">Mélanie Decourteix</name>
<name sortKey="Franchel, Jerome" sort="Franchel, Jerome" uniqKey="Franchel J" first="Jérôme" last="Franchel">Jérôme Franchel</name>
<name sortKey="Leblanc Fournier, Nathalie" sort="Leblanc Fournier, Nathalie" uniqKey="Leblanc Fournier N" first="Nathalie" last="Leblanc-Fournier">Nathalie Leblanc-Fournier</name>
<name sortKey="Moulia, Bruno" sort="Moulia, Bruno" uniqKey="Moulia B" first="Bruno" last="Moulia">Bruno Moulia</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001250 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001250 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28412928
   |texte=   Poplar stem transcriptome is massively remodelled in response to single or repeated mechanical stimuli.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28412928" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020